Carbon Storage and Potential for Emissions Offset in the Long Lane Forest

Thomas Davoren, Rebecca Downer, Terra Ganey, and Andrew Hennessy

Research Forests: Tackling the problem of increased anthropogenic CO₂ emissions

Goal 1: Wesleyan shall achieve carbon neutrality for all greenhouse gas emissions before 2035.

Wesleyan committed to a 2050 carbon neutrality date in 2007 and now will accelerate its response to the global and local climate emergency in response to a 2018 United Nations report, which found that global carbon dioxide emissions need to fall 45 percent by 2030 to limit global warming to 1.5°C. By moving towards carbon neutrality as rapidly as possible through limiting and eventually eliminating fossil fuel emissions, Wesleyan will do its part to mitigate the impact of climate disasters on its campus, its students, and its community. The minimum cost for such a transition is \$100 million.

Image Source: Wesleyan's Sustainability Strategic Plan, 2020

Image Source: Colgate University Forest Carbon Inventory and Projections, 2018

Image Source: Joel Labella, Drone Image of LLF, 2020

Connecticut and Long Lane Forest History

Image Source: Long Lane Farm, Wesleyan University, 2018

Image Source: Connecticut Forest and Park Association

Field Component

- Plot setup
 - DBH sampling / tree identification
 - Soil sampling
 - Bulk density
 - % Carbon

Xavier Lopez taking soil sample for % carbon (Image by Phil Resor)

Tree Tag on a red maple in Plot C

Soil auger for bulk density

Laboratory Component

• Tree carbon equation (Jenkins, 2004)

biomass = $e^{(\beta_0 + \beta_1(\ln(DBH)))}$

- Soil calculations
 - Bulk Density
 - %C

Soil for bulk density calculation from Plot A

Microbalance and tin capsules for soil analysis

Elemental Analyzer in Limnology Lab

	S	Permanent C ummary Statistics for	arbon Plots Trees in the Sample	
Plot	Tree Count	Mean DBH (cm)	Mean Carbon (kg)	Sum Carbon (kg)
A	19.00	15.16	56.51	1,073.66
В	23.00	20.43	109.50	2,518.55
С	10.00	20.60	125.67	1,256.72
D	44.00	14.35	69.03	3,037.38
E	8.00	19.98	93.94	751.52
F	24.00	16.78	91.07	2,185.57
G	19.00	21.53	177.62	3,374.83
Н	21.00	22.30	228.68	4,802.20
Total	168.00	18.07	119.00	19,000.44

Permanent Carbon Plots at Long Lane Forest

65 130 260 Meters

Andrew B. Hennessy Senior Seminar Spring 2021

Tree Species

Treemap showing the relative proportions of 140 identified trees. Numbers represent count of species in the sample, any unnumbered species only had 1 individual.

The groups follow the categories of Jenkins et al. (2004): mb = soft maple / birch mh = mixed hardwood mo = hard maple / oak / hickory / mh beech tf = true fir / hemlock na = species not listed in Jenkins et al. (2004).

This figure excludes the 28 unidentified trees in our sample.

Understory Species

Distribution of Aboveground Carbon

The histogram (80kg bins) shows the distribution of carbon per tree in our entire sample, while the bar chart compares total and mean aboveground carbon per plot.

Aboveground Living Carbon per Plot

The bar numbers are tree count (bottom) and mean carbon per tree (top)

The majority of our trees contain between 0-160 kg of above ground carbon, adding to a total of \sim 19,000 kg.

Our plots vary greatly in their total and mean above ground carbon.

Total Carbon per Species

The numbers are average DBH of that species.

Red maple contained by far the most carbon, even excluding tree 20.

Cherry was a large component of the carbon, almost rivaling Hickory even with half as many trees.

Soil Carbon Estimates

Table 3: Soi	l carbon	measurements	from	forest pla	ots
--------------	----------	--------------	------	------------	-----

Plot ID	Volume of soil (cm ³)	Mass of soil (g)	Soil Bulk Density (g/cm ³)	Soil Carbon wt. %	Total Soil Carbon per Plot (kg)
А	646.99	548.70	0.83513213	4.629	2729
в	618.36	551.92	0.87900297	5.33	3307
С	562.82	362.74	0.62961311	6.089	2706
D	687.067	685.68	0.98578549	4.073	2834
E	572.56	451.36	0.77368951	5.406	2953
F	649.85	676.63	1.02831388	4.497	3264
G	655.58	543.84	0.8167782	3.271	1886
Н	701.38	705.19	0.993484	2.697	1891
Note: Soil vol	umes were calculated based of	n the auger radius and	length, but may have be	een an underestimation of	total soil volume.

		Total Sampled Carbor	ı	
	Per p	olot sums of our two measured carb	on pools	Total
Plot	Mean Carbon per Tree (kg)	Sum Aboveground Carbon (kg)	Soil Carbon (kg)	Total Plot Carbon (kg)
A	57	1,074	2,729	3,802
В	110	2,519	3,307	5,825
С	126	1,257	2,706	3,973
D	69	3,037	2,834	6,117
E	94	752	2,952	3,715
F	91	2,186	3,264	5,482
G	178	3,375	1,885	5,260
Н	229	4,802	1,891	6,727
Total	113	19,000	21,568	40,901
		Total Carbon		
	Carbon from ou	ir sampled pools extrapola	ited to the wi	hole forest
To	otal Sampled Carbo	on Total Forest Ca	rbon (Carbon per Hectare
	(k	g)	(kg)	(kg)
	40,9	01 1,987	7,826	162,718

Influences on Plot Carbon Storage

1. Quantity of trees

2. Average DBH (including outliers)

The bar numbers are tree count (bottom) and mean carbon per tree (top)

Successional Stage

Young forests have the potential to accumulate more carbon

Increased presence of red maples in NE adds potential for carbon storage

Aerial photos of the Long Lane Forest area from 1934 to 2020. The 2020 photo was taken with a drone in November

Potential for Emissions Offset

2019 travel emissions: 1.65 × 10⁶ kg C Long Lane Forest: 1.98 × 10⁶ kg C

 \rightarrow LLF would have to sequester 10⁶ kg C in a *single year* to completely offset travel emissions

- → Reduction of travel down to 1/10th of the current rate would increase the forests likelihood of sequestering a comparable amount of carbon
- → Convert undeveloped land to forests!

Conclusions

- Field work
 - Established 8 plots
 - $\circ \quad \mbox{Tree and soil sampling} \\$
- Laboratory work
 - Tree carbon analysis
 - Soil analyses
- Forest analysis
 - Understory
- Carbon sink potential
 - 1. More studies
 - 2. Re- and afforestation
 - 3. \downarrow campus emissions

Class photo taken with drone [Missing Phia, Yuke, Kush] (image by Joel Labella)

Aerial photos of the Long Lane Forest area from 1934 to 2020. The 2020 photo was taken with a drone in November

Aerial photos

- 1. Plot setup
- 2. Lab components
- 3. Equations
- 4. Comparisons to other research forests
- 5. Comparisons to Northeast
- 6. Wesleyan's goals
- 7. Future directions for forest
- 8. Forest history

Potential Questions / Answers